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’ INTRODUCTION

Allosteric regulation plays a key role in a myriad of biomacro-
molecular processes in living systems from gene expression to
metabolism.1,2 Specifically, the process of allostery refers to the
transmission of a local perturbation, such as the binding of a ligand
or a covalent modification,3 on a protein to a distant site that is
beyond the direct influence of the original perturbation,4 and it has
been argued that such an allosteric property is intrinsic to most
proteins.5While the importance of allostery is widely recognized,6�9

its physical mechanism is not well understood. The traditional
interpretation of the allosteric mechanism has been based on either
the concerted model10 or the sequential model.11 More recently,
allostery2,5,12�14 has been viewed in terms of protein conformational
ensembles, which reflect the thermal fluctuations of protein struc-
tures, where signal transmission is explained by population shifts of
conformational substates5,12,15�17 induced by perturbations. While
the ensemble view is sufficiently general to accommodate a wide
variety of allosteric phenomena, the complexity associated with the
adequate representation and analysis of a potentially large number of
conformational substates has limited its predictive power. The
development of a compact model for understanding allostery at
atomic detail, which is physically and mathematically rigorous, is
therefore an important objective.

The capability of transmitting a local structural-dynamic
perturbation to a distant site relies on the intrinsic properties
of dynamical coupling within a biomolecular system. In theory, a
long equilibrium trajectory of an unperturbed system, for exam-
ple, a protein in its apo state, statistically sampling all relevant
conformations involved in an allosteric transition is sufficient for

the prediction of the amplitudes, pathways, and time scales of signal
transmission upon a given perturbation, provided that it follows a
population shiftmechanism. Recently, analysis of intrinsicmotional
coupling in dihedral angle space in the model protein ubiquitin
revealed the dominance of short-range correlations with remark-
ably few medium- or long-range correlations.18�20 Ubiquitin is a
notably stable protein, which efficiently samples its functional
substates separated by low energy barriers within its native energy
basin on the submicrosecond time scale.21 In the present study, we
investigate the allosteric propensities of biomolecular systems that
exhibit conformational transitions between multiple distinct states
separated by higher energy barriers of several kBT.

In an allosteric system, the initial perturbation alters the
distribution of the degrees of freedom (DOF, e.g., dihedral angles)
describing a local allosteric region (also known as the effector
region), which is in direct contact with the ligand. In the presence
of dynamical coupling, the altered distribution of the DOF of the
allosteric region will affect the distributions of the DOF of the rest
of the protein, which amounts to signal transmission. The resulting
conditional ensemble, representing the probability distribution of
the DOF of the rest region in the presence of the constraint
probability distribution of the DOF of the allosteric region,
contains all essential information about the structural-dynamic
coupling between the different protein parts. The representation
of protein molecules as Markovian systems22�26 was demon-
strated recently to be a suitable approach for capturing their kinetic
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teric signal propagation. The master equation-based approach for
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peptides and proteins from dihedral angle dynamics observed in
extended molecular dynamics simulations. The MAPS approach is first applied to the alanine-pentapeptide, and the results are
tested against an explicit simulation in the presence of local conformational constraints, confirming the validity and accuracy of the
model. We then apply the approach to a larger Markovian system based on a millisecond all-atom protein molecular dynamics
trajectory of BPTI (Shaw et al. Science 2010, 330, 341�346). We use MAPS to illustrate in silico the propagation of a local
perturbation over medium- to long-range distances across a disulfide bridge linking loops L1 and L2, which constitute the binding
interface of BPTI.
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and thermodynamic properties, suggesting a means to quantita-
tively describe protein allostery. By extracting from an MD
trajectory the kinetics of the transition network involving the
various protein substates, it is possible to construct a Markov
model capable of describing the populations of individual substates
and their time evolution starting from an arbitrary initial popula-
tion distribution. Importantly, theMarkovmodel, represented by a
master equation, can then be subjected to constraints on popula-
tions and conformational transitions, which after numerical inte-
gration of the modified master equation permits the systematic
investigation of perturbations and their propagation within the
biomolecule. This allows direct analysis of intramolecular com-
munication among multiple distant sites.

In this work, we implement this concept using a master
equation approach24 based on molecular kinetics in dihedral
angle space, capable of describing both the amplitude and the
time evolution of signal transmission within a biomolecule in a
quantitative and predictive manner. This approach is illustrated
for a pentapeptide permitting a thorough in silico analysis of
signal transmission via the population shift mechanism. In a
second study, the model is further explored by application to the
significantly larger protein system Bovine Pancreatic Trypsin
Inhibitor (BPTI) based on a recent atomistic millisecond time
scale molecular dynamics (MD) trajectory.27

’METHODS

Molecular Dynamics Simulation. A 2 μs simulation of the
capped alanine pentapeptide, (CH3CO-Ala5-NHCH3; denoted hereafter
as Ala5) was performed with the AMBER-GSS force field,28 ported to
GROMACS,29 and the explicit TIP3P solvent model30 using the GRO-
MACS software package (version 4.0.7).31 This force field was shown to
provide good agreement between simulated and experimental helix�coil
equilibria.32 Cut-off distances for the van derWaals interactions and short-
range electrostatic interactionswere set to 10 and 8Å, respectively, and the
long-range electrostatic interactions were treated with the particle-mesh
Ewald summation method.33 All bonds involving hydrogen atoms were
constrained using the LINCS algorithm,34 and the integration time step
was set to 2 fs. A fully helical conformation of the peptide was used as
starting conformation. Standard minimization and equilibration proce-
dures described previously21 were applied prior to the final production run
at 300 K. Conformations were stored every 1 ps, yielding an ensemble
with 2 � 106 conformations.

For BPTI, an all-atom 1.03 ms trajectory27 by D. E. Shaw Research
was used in the present study. The trajectory was run at 300 K under the
NVT condition using a variant of the Amber ff99SB force field35

incorporating modified isoleucine parameters36 and the TIP4P-Ew
water model.37 A total of 41 250 conformations were used for subse-
quent analysis sampled every 25 ns.
Master Equation. For simplicity, the master equation approach is

explained in the following for the pentapeptide, but its generalization to
other systems, including BPTI, is straightforward. To construct a
discrete master equation, the conformation of each individual residue
of the polyalanine peptide is assigned to either a helical (“α”) or
nonhelical (coil) (“β”) state based on its backbone j,ψ dihedral angles
using the transition-path-based assignment.24 Two circular regions
(with radius of 15�) centered around (j,ψ) = (�60�,�50�) and
(�60�,120�) were defined as helical and coil, respectively. Only the
transitions from one region to another were recognized as change of
states to suppress fast non-Markovian dynamics (such as fast librational
motions). Similar to previous work,24 the pentapeptide Ala5 is described
by a total of 25 = 32 states, ranging from βββββ (all coil) to ααααα (all
helix); the corresponding decimal numbering of the states goes from

1 (all coil) to 32 (all helix). The transition rate constant (kji) from state i
to state j is calculated as kji = (Nij + Nji)/(2Ti) and kii =�∑j 6¼ikji, where
Nji is the number of transitions from i to j and Ti is the total residence
time of state i.

The master equation can be expressed by a set of first-order linear
differential equations:

dP=dt ¼ K 3PðtÞ ð1Þ
where K is the 32� 32 transition rate constant matrix with elements kji,
and P(t) = (p1, p2, ..., p32)

T is a column vector that contains the 32
populations of the individual substates fulfilling ∑k=1

32 pk = 1, pk g 0 .
Although the rate constant matrix K is derived from an equilibrium MD
simulation, the master equation is capable of capturing the nonequili-
brium dynamics (relaxation) of a pre-steady state, for example induced
by a ligand-binding event, toward the new equilibrium. Importantly, the
equilibrium properties of K can be biased to study the propagation of a
perturbation through the protein system as described in the following
section.
Master Equation-Based Approach for Allostery by Popu-

lation Shift (MAPS). The effect of an external perturbation on a local
residue can be described as a bias in the kinetic rates. Without loss of
generality, we investigate the situation that the C-terminal residue Ala5 is
restrained to the coil state (β) after perturbation. Such effects can be
modeled by preferentially biasing the XXXXβmanifold over the XXXXα
manifold of conformational substates, where X represents an arbitrary
conformation β or α, through selective rescaling of the rate constants:

kji
ðnewÞ ¼ ε 3 kji

ðoldÞ and kijðnewÞ ¼ 1
ε 3
kij

ðoldÞ ð2Þ

where i and j represent any state from the XXXXβ and XXXXαmanifolds,
respectively, and ε is a prefactor (0 < ε < 1), which is set to 10�3 in this
study, representing a strong local perturbation of the system. Under this
constraint, the new equilibrium populations are directly given by

Pðt f ∞Þ ¼ j0æ ð3Þ
where |0æ is the eigenvector with zero eigenvalue of the modifiedKmatrix
satisfying ∑j=1

32 |0æj = 1. It is noteworthy that the new equilibrium is solely
determined by the modified kinetic matrix, independent of the initial
condition P(0). The change of the coil population of residue S of Ala5 is
then given by the sum over all elements j of the vectorΔP = P(tf∞)�
P(0) in which residue S is in the coil state. For example, for S = 2,ΔPS=2 =
∑j∈XβXXXΔPj(t f ∞) (where the sum goes over the 24 conformations
with X (=α or β) of residues 1, 3, 4, and 5).

To investigate the role of individual residues after initial perturbation,
the conformational transition (αT β) of a residue S can be selectively
switched off by setting the rate constants knm = knm = 0, where m and n
represent all substates where residue S is not in the same conformation.
Only those transitions are retained in K that leave the conformation of
residue S unchanged, and, hence, residue S is prevented from participat-
ing in any (allosteric) transmission pathway. Such constraints can be
simultaneously applied to multiple residues to suppress their effect on
signal transmission. In this manner, a subset of states can be selectively
“decoupled” from the rest, which results in a rate constant matrix with
more than one zero eigenvalue. To account for this situation, eq 3 needs
to be modified as follows:

Pðt f ∞Þ ¼ ∑
λj ¼ 0

j
jvæjÆwjjPð0Þ ð4Þ

where λj are the eigenvalues of K. |νæj and Æw|j are the right and left
eigenvectors ofK, respectively, with zero eigenvalue (for a more detailed
description of theMAPSmethod, including the derivation of eqs 3 and 4,
see the Supporting Information).
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As an independent control for the population shift predicted by eq 3, a
2 μs MD simulation was performed in explicit solvent with residue Ala5
restrained to its coil state (β), followed by the analysis of the change of
equilibrium populations. For this purpose, a harmonic restraining
potential was applied to both j and ψ angles of Ala5 of the form:

VðξÞ ¼ 1
2
kξðξ� ξ0Þ2 ð5Þ

where kξ = 328.28 kJ/mol/rad2, and ξ0 = �60� or 120� is the
equilibrium value for the j or ψ angles, respectively.

’RESULTS AND DISCUSSION

Medium- to Long-Range Correlations of the Peptide
Dynamics. In the 2 μs MD trajectory, the Ala5 peptide effectively
samples multiple conformations where each residue can jump
between the helical and the coil state, which differs, for example,
from the native-basin fluctuation behavior of ubiquitin.21 How-
ever, when focusing on the subensemble where Ala5 resides in its
“native” energy basin of the all-helical state ααααα accounting for
62% of the total population, the absence of any large medium- and
long-range dihedral angle correlations is revealed (Figure 1B).
Hence, in its native energy basin, the Ala5 peptide exhibits, despite
its smaller size, dihedral angle correlation characteristics that are
qualitatively similar to the ones of ubiquitin.18,19 By contrast, when
the entire MD ensemble of the pentapeptide is analyzed involving
conformational jumps dominated by the ψ angle among all 32
different substates, a qualitatively different global correlation
pattern emerges (Figure 1A), with |r| = 0.19�0.44 (0.33 on
average) between different ψ angles. These types of correlations
provide conditions that permit the longer-range transmission of
structural signals upon local perturbation.
Global Effect of a Local Conformational Restraint. Any

biomolecular process, such as a ligand binding event, can have an
effect on the structure and dynamics of a protein. Although such a
process often starts out via local interactions with residues in
direct contact, it eventually may have a remote or even global
effect on the protein involving protein regions that are far beyond
the direct contact region with the ligand. In the present study, we
model such a local perturbation by a harmonic dihedral potential
(eq 5) applied to the j,ψ angles of the C-terminal residue, Ala5,
representing a strong bias of the distribution of the local DOF.

This harmonic potential, which is strictly confined to the j,ψ
angles of residue Ala5, represents an ideally localized perturbation
of the system. Interestingly, the effect of such a perturbation is
eventually spread over the other four residues Ala1�Ala4, which
are unconstrained, as can be seen in Figure 2: the equilibrium
populations of individual residues shift toward the coil states,
which is apparent even for theN-terminal residue Ala1 (Figure 2).
Although this is a sizable effect, it falls short of locking Ala1�Ala4
into their all-β state. The result illuminates at atomic detail the
inner working of allostery for this model system where the local
structural propensity of an “active site” residue (Ala1) can be
substantially changed upon a perturbation at the distant “allosteric
site” (Ala5).
Time Course of Equilibration from Master Equation. A

benefit of the master equation is that it not only provides
equilibrium populations but also the time-dependence of the
populations of individual substates as they approach a new
equilibrium in response to a perturbation. The accuracy of the

Figure 1. Backbone j,ψ dihedral angle correlations of alanine penta-
peptide, Ala5, from 2 μs MD simulation. The absolute values of the
Pearson correlation coefficients for all pairs of backbone j,ψ dihedral
angles are determined (A) from all conformations of Ala5 and (B) from
the subset of conformations in the all-helical state (ααααα). The all-
helical state accounts for 62% of the total population. Along the x (y)
axis, the left (bottom) and right (top) fields assigned to each residue
correspond to j and ψ, respectively.

Figure 2. Change of population densities of alanine pentapeptide
ΔPresidue(j,ψ) = Presidue

(restrained) � Presidue
(unrestrained) in the j,ψ dihedral space

for residues Ala1�Ala4 upon restraining residue Ala5 with the potential
of eq 5 during a 2 μsMD trajectory. The changes of the total populations
for Ala1, Ala2, Ala3, and Ala4 are 17.5%, 24.6%, 28.1%, and 33.4%,
respectively.

Figure 3. (A) Time-dependence of equilibration after perturbation at
time 0 is applied as calculated by the master equation (blueO). The red
dashed lines represent the new populations of individual residues
extracted from the restrained simulation. (B) Retardation effects of
the structural response as revealed by the time-dependence of popula-
tions during relaxation to the new equilibrium for individual residues
according to eq 6.
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predicted population shift can be assessed by comparison with
the explicit MD simulation subjected to a perturbation by the
application of the restraining potential of eq 5. As shown in
Figure 3A, the perturbed system reaches a new equilibrium state
on the nanosecond time scale, with the conditional populations
derived from the master equation that are in excellent agreement
with the ones obtained from the MD simulation.
To analyze retardation effects involving the structural com-

munication between the C-terminal residue, Ala5, and the other
residues, the population change of the coil conformation is
normalized for each residue, followed by monitoring of the
time-dependence of the approach toward equilibrium:

frelaxðtÞ ¼ PcoilðtÞ � Pcoilð0Þ
Pcoilðt f ∞Þ � Pcoilð0Þ ð6Þ

The relaxation process exhibits a multiexponential behavior
(Figure 3B) reflecting the complexity of the transition network.
Examination of the function frelax in Figure 3B for Ala1�Ala4
reveals the order of effective response times for re-equilibration
after perturbation of Ala5: τAla4 < τAla3 < τAla2 < τAla1. The
perturbation propagates in a diffusive manner rather than in a
wave-like manner affecting the residues that are close in terms of
primary sequence and spatial distance. The new equilibrium is
reached within ∼10 ns.
Signal Transmission from C- to N-Terminus. In the poly-

alanine peptide, residues Ala5 and Ala1 represent the two most
distant sites both sequentially and spatially. Therefore, it is
instructive to examine the pathways of transmission from Ala5
to Ala1. For this purpose, we selectively switch off the transition
of individual residues by setting the corresponding rate constants
to zero (see Methods). As shown in Figure 4I, even when
residues Ala2�Ala4 are all prohibited from changing their states,
residue Ala1 still experiences a small effect of the distant coil bias
applied to residue Ala5, indicating a weak, but non-negligible
direct long-range coupling between Ala1 and Ala5. When the
dynamic restrictions to either one of the residues Ala2�Ala4
are lifted, ΔPcoil of Ala1 increases (Figures 4F�H). When the
dynamic restrictions to two or more residues of Ala2�Ala4 are
released, the increase ofΔPcoil of Ala1 continues (Figure 4A�D).
In addition, the restriction to any one of the residues Ala1�Ala4
will decrease ΔPcoil of the other three residues (Figure 4B�E).
This result underpins the distributed nature of the underlying
communication network simultaneously involving all parts of the

peptide, which is consistent with the multiple pre-existing path-
way hypothesis for allosteric regulation.4

Application to Millisecond MD Trajectory of BPTI. Because
allosteric conformational changes in proteins typically take place
on relatively slow time scales,17,38,39 direct observation of allos-
teric transitions by standard all-atom MD simulations has
traditionally been difficult. However, the recent development
of the special-purpose computer Anton40 has permitted all-atom
MD simulations on much longer time scales than previously
possible, with which Shaw et al. have performed a simulation of
the folded-state dynamics of BPTI over 1 ms.27 Here, we apply
the MAPS approach to this trajectory to explore long-range
communication in BPTI.
The trajectory reversibly samples dihedral angle transitionsmulti-

ple times with their mutual correlations depicted in Figure 5A.
A sizable number of nonsequential dihedral angle correlations occur
between loop L1 (residues 9�18) and loop L2 (residues 36�40),
which are connected by a disulfide bridge betweenCys14 andCys38
(Figure 5B). In experiments, the χ1 angles of both of these cystines
undergo isomerizations on the microsecond�millisecond time
scales, thereby enhancing transverse nuclear spin relaxation.41,42

The sampling of backbone dihedral angle j,ψ space by the 15
residues on loops L1 and L2 is depicted in Figure 6. They show
multimodal distributions preferentially sampling between 2 and 4
distinct regions. For the application of MAPS, the backbone
conformations of individual residues are grouped into discrete
states, indicated by the cyan circles with 15� radius in Figure 6,
where only transitions between the circled regions are counted as a
change of state. If each amino acid sampled the conformational
regions independently from each other, loops L1 and L2 would
occupy 442 368 substates. However, because of interdependencies
of the occupancies and limited sampling, only a subset of 2081 states
are actually sampled during the 1 ms trajectory.
It is instructive to analyze the mutual dynamic correlations

between all of thej,ψ angles in terms of their pairwise distances.
As can be seen in Figure 7, the Pearson correlations tend to
diminish at larger distances (>15 Å). Interestingly, a number of
moderately large correlations (r > 0.3) occur in the medium- to
long-distance range of 10�15 Å. These correlations, which are
statistically significant as judged from their uncertainties when
dividing the trajectory into three consecutive subtrajectories of

Figure 4. Change of coil state populations ΔPcoil of individual residues
predicted by the master equation in the presence of dynamic restrictions
for selected dihedral angles. Residue Ala5, which is locally restrained to
the coil state, shows the largest ΔPcoil value. Residues whose conforma-
tional transitions are “switched off” are indicated by red arrows.

Figure 5. (A) Absolute correlation coefficients |r| of the j,ψ torsional
dynamics of BPTI determined from the 41 250-member molecular
ensemble corresponding to the 1.03 ms MD simulation. Correlations
between loops L1 and L2 are highlighted by the white circle. (B) The 15
residues belonging to loop L1 (residues 9�18) and loop L2 (residues
36�40) are colored inmagenta and green, respectively, whose dynamics
is analyzed by the MAPS approach.
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identical lengths of 0.34 ms each (see Figure S1), involve residue
pairs Lys15/Arg39, Arg17/Cys38, and Arg17/Arg39 with |r| >
0.6 located in distant parts (>11 Å) of the two loops.
On the basis of the kinetic matrix K constructed from the MD

simulation, we perform an in silico experiment, in analogy to the
polyalanine peptide, by investigating the allosteric effect of a local
perturbation on the side-chain χ1 dihedral angle of Cys14. As
shown in Figure 8A, upon restraining Cys14 χ1 in the gauche�

conformation, a global population shift of backbone conforma-
tions of the two loops is observed whereby the 15 loop residues
are affected to a differential degree. As can be seen in Figure 8C,
the largest population shift occurs for Cys14 χ1, which is ex-
pected because this is the dihedral angle that was fully con-
strained to the gauche� conformation. Remarkably, the back-
bone conformational states also show large population shifts of
up to ΔP≈ 50%, which belong to residues both in L1 and in L2
(Figure 8A). The χ1 angle distribution of Cys38, which is the
disulfide-bond partner of Cys14, strongly favors the gauche+ over
the gauche� conformation (see Figure S3) at equilibrium, and its

population is shifted by only 8% from gauche+ to gauche� by the
constraint on Cys14 χ1. This is a manifestation of weak dynamic
coupling between these two cystines, consistent with their low
Pearson correlation coefficient (r = 0.27). When constraining
Cys14 χ1 and blocking the transitions of Cys38 χ1, the effect on the
population shift pattern is very minor (Figure 8B,C). This implies
that the communication between Cys14 χ1 and dihedral angles of
loop L2 can largely bypass the through-disulfide bond pathway.

’CONCLUSION

The population shift mechanism has become a preferred view
of allostery in biomolecules, but the lack of accurate molecular
ensembles has hampered the detailed understanding of allosteric
effects in concrete cases. Allosteric propagation of a perturbation
via the population shift mechanism can only take place when
some of the underlying DOF show a sizable degree of dynamics
correlations. Proteins that only display weak correlations over
medium- and long-range distances have limited capability for
allosteric behavior within the population shift framework. Be-
cause the experimental quantification of long-range correlations
is very challenging, atomic detail MD simulations have an
important role to play.

Figure 6. The Ramachandran dihedral angle distributions of the 15
residues of loop L1 (residues 9�18) and loop L2 (residues 36�40). The
color shading represents the potential of mean force �ln(p) per grid
element of 5� � 5�, which ranges from [�ln(p)]min to +∞ for each
residue (from black to sandy brown). The backbone conformations of
individual residues are grouped into discrete states, indicated by the cyan
circles of 15� radius, providing a discrete representation of the system
suitable for the MAPS approach. Only transitions between the circled
regions are regarded as a change of state.

Figure 7. Plot of correlation coefficient r versus distance of all pairs of
backbone j,ψ angles of BPTI. The position of a given dihedral, defined
by the atom quartet atom1�atom2�atom3�atom4, is defined as the
midpoint between atom2 and atom3. For the calculation of r, the j,ψ
angles are placed in the intervals j ∈ [0,360�) and ψ ∈ [�120�,240�).
The slow conformational transitions observed during the millisecond
BPTI trajectory give rise to several substantial correlations (|r| > 0.3) at
medium distance range (up to ∼15 Å).

Figure 8. (A,B) The absolute values of population change (ΔP) of
individual residues upon a local perturbation, which enforces the
gauche� state of Cys14 χ1 (A) without and (B) with freezing the
transitions of Cys38 χ1, denoted as ΔP1 or ΔP2, respectively. For the
residues with more than two states,ΔP refers to the state with the largest
population change. (C) Scatter plot of ΔP2 versus ΔP1 for the 15
residues (j,ψ states), Cys14 χ1, and Cys38 χ1.
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In this work, we introduce the MAPS formalism as a tool to
quantitatively address the origin of allostery. On the basis of
time-resolved molecular ensembles generated by long all-atom
equilibrium MD simulations, the internal equilibrium dy-
namics of a polypeptide is translated into a discrete Markov
model, which captures the kinetic and thermodynamic equi-
librium properties of the unperturbed system at atomic resolu-
tion. The concise form of the master equation gives direct
access to correlation effects and the systematic identification of
the time scales, amplitudes, and pathways of signal transmis-
sion. The MAPS formalism is illustrated here for dihedral
angles, but it can be applied to other coordinates too. A
precondition for the application of MAPS is that conforma-
tional substates and their interconversions, which dominate
the conditional ensemble after the perturbation, such as ligand
binding, must be statistically adequately sampled in the simu-
lation of the free state. With ever longer MD simulations
becoming available,43 this condition is increasingly well ful-
filled. In cases where the time scales for allosteric signal
transmission are too long to be accessed by current MD,
enhanced sampling techniques or a large number of short
MD trajectories are valuable options.23,44 The initial perturba-
tion is modeled in the present work by the application of a local
restraining potential to dihedral angles that reside at the
allosteric site. Alternatively, one can reweight the free ensem-
ble through the computation of explicit energy changes during
the early approach of a ligand to the allosteric site as was
demonstrated recently for the Hrs-UIM:ubiquitin complex.21

This will help elucidate the effects of long-range electrostatic
interactions on population shift and allostery.

For the alanine pentapeptide, the master equation predicts
how a specific perturbation at the C-terminus propagates
throughout the whole molecule, which is validated against an
explicit restrained simulation. The result supports a population-
shift mechanism of allostery and reveals multiple indirect and
direct communication pathways between distant sites. Applica-
tion of the MAPS approach to a 1 ms trajectory of BPTI
exemplifies the medium-range impact of a local perturbation
on Cys14 χ1. Despite the presence of the disulfide linkage
(Cys14�Cys38) to loop (L2), the side chain Cys38 χ1 is not a
critical participant in the transmission pathway.

Taken together, allosteric signal propagation within the
framework of population shift can take place in systems with
a network of sizable torsional correlations as displayed both by
the alanine pentapeptide and by the L1/L2 loop region of BPTI.
While these correlations indicate soft- to medium-strong cou-
pling behavior between the respective DOF, they can induce
significant population changes in remote regions when one or
several DOF are constrained. As molecular mechanics force
fields, algorithms, and computer hardwares continue to ad-
vance, increasingly realistic ensembles of larger biomolecules
and their complexes can be constructed and validated against
quantitative experiments. Their comprehensive analysis by
kinetic models, such as MAPS, is expected to provide important
new insights on the many facets of allostery in its role for
biomolecular function.

’ASSOCIATED CONTENT
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